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Abstract

We propose a new approach of diagnosis of hybrid
systems using SMT (SAT Modulo Theory) tech-
nology. Diagnosis of hybrid systems is reduced
to a series of diagnosis questions that are solved
using SMT solvers. We show that this approach
allows to deal with a new class of systems and
paves the way to a new approach to diagnosis of
hybrid systems.

1 Introduction

We consider the problem of diagnosis of hybrid systems,
i.e., dynamic systems that involve both continuous (e.g.,
temperature) and discrete – but possibly on continuous do-
mains – (e.g., voltage, switch position) evolutions.

1.1 Related Work

Hybrid systems have been extensively studied in the liter-
ature. They are sometimes designated by the expression
“multiple mode systems,” where the set of modes is the do-
main of the discrete variables and each mode defines a dif-
ferent set of rules for the continuous evolution.

There are essentially two classes of diagnostic approaches
for hybrid systems. The first class builds on the redundan-
cies in the system model: under certain assumptions on the
system mode (for instance, no fault in a specific part of the
system), the model equations allow to derive a constraint
(or indicator) on the observed variables, such that the vio-
lation of this constraint is indicative of a violation of one
of the assumptions [Staroswiecki and Comtet-Varga, 2001].
The main issue addressed by the research community for
this type of approach is that of the number of indicators,
in particular because the set of system modes is the Carte-
sian product of its constituent modes and is consequently of
exponential size. The popular strategy is to instantiate the
indicators on the fly [Heintz et al., 2008]. Other issues in-
clude flexibility: because the indicators are built for a given
observability, they cannot accomodate optimally a change of
observability (for instance, different sampling rates, tempo-
rary masking, etc.) and the automatic generation of the in-
dicators when the model involves non reversible functions.

The second class of algorithms is based on the simu-
lation of the hybrid system either tentatively exhaustively
(multiple Kalman filters [Blom and Bar-Shalom, 1988]) or
through Monte Carlo sampling (particle filters [Arulam-
palam et al., 2002]). Given a probabilistic belief state,

the possible evolutions of the state are computed and com-
pared to the actual observation to update their respective
probabilities. Again a major problem of this type of ap-
proach is that the number of evolutions is too large to
enumerate and a substantial body of work is dedicated
to reducing the representation of the belief state through
approximation or pruning [Blom and Bar-Shalom, 1988;
Benazera and Travé-Massuyès, 2009]. Such operations are
however very hazardous because the correct assumption
of unlikely events such as faults must often go through a
steady-increasing probability period where the probability
is still so low that it may be reset by the approximation pro-
cess. Furthermore, this approach necessitates a model from
which the state evolution can be predicted. In case of un-
known behavioural mode, the best that can be done is to
ignore the variables whose value cannot be predicted [Hof-
baur and Williams, 2004].

Diagnosis of hybrid systems with SMT solvers was first
suggested by Ernit and Dearden [2011]. The main differ-
ences with the work presented here is that i) they limit them-
selves to real-valued variables and do not discuss the dy-
namics of continuous variables, and ii) they only consider
a conflict-based approach, while other diagnostic strategies
can be used [Grastien et al., 2011]. Finally the object of this
article is also to argue that a consistency-based approach, as
opposed to simulation-based approaches presented above,
allows for less precise models, i.e., models that may not pre-
dict the future state but merely give constraints on the state
variables.

1.2 Our Approach

In this work we propose an approach for the diagnosis of hy-
brid systems based on consistency. We use the framework of
Grastien et al. [2012] which formulates the diagnosis prob-
lem as a series of diagnosis questions, each of which tests
the consistency of some diagnostic assumptions with the di-
agnosis problem at hand. We assume that the number of
discrete steps can be bounded and we reduce each question
to the problem of finding an assignment to the state vari-
ables (both discrete and continuous) at these time steps that
is consistent with (i.e., does not contradict) the model, the
observation, and the assumptions. More specifically we re-
duce the diagnosis question to a constraint satisfaction prob-
lem written in the SMT (SAT Modulo Theory) framework.
As opposed to the classical approach where the state of the
system at a given time is defined as a function of the state
at previous time (time being either discrete or continuous),
we define the model as a number of constraints between the



values of the continuous and discrete variables at the current
and the previous (discrete) times. For simplicity we restrict
ourselves to piece-wise linear constraints; our approach can
deal with more general models, but the number of existing
solvers for such SMT problems drops quickly with the com-
plexity of the constraints.

Compared to the simulation-based approaches, our ap-
proach does not require to maintain a probabilistic belief
state which, to be precise enough, is prohibitive to maintain
(in the case of the Adapt Lite system used for our experi-
ments, the discrete space is already in the order of 1012 with-
out considering the real-valued state variables). Further-
more we can deal with unknown behavioural modes: state
variables whose evolution in certain modes is unspecified;
in such situations, the CSP simply leaves these state vari-
ables assignments free. Compared to the redundancy-based
approaches, our approach can accomodate any observabil-
ity.

The here-proposed approach bears some similarities with
bounded model-checking for hybrid systems [Audemard et
al., 2004]. There are however significant differences in the
type of SMT problems generated. BMC for instance is in-
complete and, consequently, is generally used to its limits;
with diagnosis, we want to return solutions that are as pre-
cise as the model allows. On the positive side, diagnosis
is based on a partial-observed observed run of the system,
which means that the state space that needs to be explored
is more restricted than in a model-checking problem.

We first present the hybrid system model and the diag-
nostic problem. We next present the reduction to SMT of
a diagnostic test, and illustrate the implementation on the
Adapt-Lite from the DX Competition.

2 Hybrid Systems

Hybrid systems are a class of models that include both vari-
ables that evolve continuously and variables that evolve dis-
cretely. The evolution of the continuous variables is usually
defined by a set of equations that changes according to the
value of the discrete variables.

Ideally the evolution in the continuous space is described
by differential equations: ẋ = fQ(x, i,w) where x is
the vector of (continuous) state variables, ẋ is the differ-
ential state vector, i is the input vector, w is a (usually
white Gaussian) noise, and Q is the system mode (discrete
state). For computational reasons complex differential equa-
tions are often dropped in favour of difference equations:
x@τ ′ = fQ(x@τ, i, τ ′ − τ,w) where τ < τ ′ are two times
such that the input and the mode of the system is unchanged
during the time period [τ, τ ′]. The problem is often re-
stricted to situations where fQ is linear, which is an accept-
able assumption when piece-wise linear approximations are
precise enough (each piece then corresponds to a different
system mode).

The models presented above are used either to simulate
the system or to deduce useful indicators. In a consistency-
based approach, we do not need such a precise model, al-
though more precision in the model will mean more pre-
cision in the diagnosis. We will still consider a discretisa-
tion of time, i.e., that the state of the system will be speci-
fied at important instants called timesteps although the time
of these timesteps will be unspecified in general, and their
number unbounded. The model will simply be a collec-
tion of constraints between the values of system variables

at consecutive timesteps. Notice that there is a reversal with
discrete event systems where the timesteps are generally as-
sociated with transitions, and states are represented for time
intervals.

To simplify notations, we assume that each state vari-
ables is defined over the set of reals R; one such variable
is time which models the time. We limit ourselves to lin-
ear constraints because the number of solvers and their per-
formance diminish quickly with more general constraints.
A linear expression is an inequality involving over linear
terms, i.e., a linear combination of variables with rational
coefficients. A linear constraint is a collections of linear ex-
pressions connected with the logical operators such as ¬, ∧,
and ∨.

Our definition of hybrid systems is very similar to the one
proposed by de Moura et al. [2008] except that i) I does not
refer to the initial state (which is included in the observa-
tions) but to the state invariants, ii) the state invariants are
extracted from the transition relation, and iii) to simplify
modeling, we distinguish soft invariants from hard invari-
ants. Hard invariants are constraints that apply in any state;
soft invariants can temporarily become true as an effect of
an instantaneous transition but must lead to another instan-
taneous transition. For instance, a nominal circuit breaker
cannot remain closed in a state where the current is over a
given limit; however that limit can be temporarily exceeded
as a consequence of a short circuit.

Definition 1 A hybrid system is a tuple 〈V, IH, IS, T 〉
where V is a set of variables, IH and IS are two sets of
hard and soft invariants both defined as sets of constraints
over V , and T is a set of transition constraints defined as
a set of cosntraints over V ∪ V ′ where V ′ is a copy of the
variables in V .

The set of transition constraints is here interpreted as a
conjunction of constraints; we could see them as a disjunc-
tion of constraints i.e., an enumeration of how the system
can evolve, or better as a conjunction of disjunctions, i.e., a
set of synchronised local models.

A state of the hybrid system 〈V, IH, IS, T 〉 is an assign-
ment of the state variables: V → R. A run is a sequence of
states s0, . . . , sk such that:

• all states si satisfy the hard constraints where v refers
to si(v);

• a state si may not satisfy a soft constraint iff a
discrete transition occurred before and after si, i.e.,
si−1(time) = si(time) = si+1(time);

• all pairs of consecutive states si, si+1 satisfy all transi-
tion constraints where a variable v refers to si(v) and a
variable v′ refers to si+1(v).

A continuous transition is a pair of consecutive states
si, si+1 such that si(time) < si+1(time). This tran-

sition is represented as follows si
δ
−→ si+1 where δ =

si+1(time) − si(time). It is assumed that if such a tran-
sition exists, then for all δ′ ∈]0, δ[, there exists a state s′

such that si
δ′

−→ s′ and s′
δ−δ′

−−−→ si+1 exist too. This can
be ensured by considering only convex constraints (the only
Boolean operator allowed is ∧).

3 Diagnostic Problem

A model-based diagnosis problem is defined by a model,
some observations, and some faulty behaviours. We now



describe the missing elements of this definition.

3.1 Observations

The framework proposed in this paper is very flexible with
respect to the observations: essentially, an observation is
just an information about the system run. We illustrate state-
based observations and event-based observations, but more
complex observations would be allowed. In particular, it is
assumed here that the observations are perfect; any uncer-
tainty on the observations is modeled in the hybrid system
itself.

Definition 2 (State-based observations) The state-based
observations are a collection of triples 〈τ, v, ν〉 where τ is
the time of observation, v is the observed variable, and ν is
the observed value.

Notice that state-based observations do not assume that
all observed variables are observed at the same time or at
the same rate. The initial state can be modeled as (possibly
partial) observations of the initial state.

A run is consistent with the state-based observation
〈τ, v, ν〉 if it contains a state s such that s(time) = τ and
s(v) = ν.

To keep the model simple, we did not explicitly represent
events. Instead, we assume that a variable v models the oc-
currence of events such that certain discrete transitions set
v to 1 and all other discrete transitions and all continuous
transitions set v to 0.

Definition 3 (Event-based observations) The event-based
observations are a tuple 〈Σo, O〉 where Σo is a subset of
observable variables modeling the occurrence of observable
events and O is a set of pairs 〈v, τ〉 where v ∈ Σo is the ob-
served event and τ is the time when the event was observed.

As opposed to state-based observations, event-based ob-
servations provide information not only when the events
are observed but also when they are not. A run ρ =
s0, . . . , sk is consistent with the event-based observations
〈Σo, O〉 iff obsΣo

(ρ) = O where obsΣo
= {〈v, τ〉 ∈

Σo × [s0(time), sk(time)] | ∃i ∈ {0, . . . , k}. si(v) =
1 ∧ si(time) = τ}.

3.2 Faults

Diagnosis is about determining what is faulty in a system.
A fault may be defined as a pattern of events [Jéron et al.,
2006]. More often though is a fault in dynamic systems de-
fined as the occurrence of a special type of event (a “faulty”
event). Equivalently a fault can be seen as the specific as-
signment of a state variable; this is the definition used in this
document.

Definition 4 (Faults) The faults are a set of variables Vf ⊆
V .

The faulty state of a run s0, . . . , sk is the set of faulty
variables that are assigned to 1 at the end of the run: {v ∈
Vf | sk(v) = 1}.

3.3 Diagnosis

A diagnostic problem is defined by a tuple 〈M, o, Vf〉 where
M is a hybrid system, o are observations, and Vf is the set
of faults.

A diagnostic candidate is a subset of faults F ⊆ Vf such
that there exists a run allowed by the model, that can gener-
ate the observations, and whose faulty state is precisely F .

The diagnosis is the set ∆ ⊆ 2Vf of diagnostic candidates.
Because the diagnosis is often uncertain (i.e., the size |∆|
is large) the focus is often on the minimal candidates, i.e.,
the sets F such that F ′ ⊂ F ⇒ F ′ 6∈ ∆. The minimal
diagnosis is the subset of minimal diagnostic candidates.

The consistency-based approach to diagnosis has been
formalized by Reiter [1987] and has been recently extended
for dynamic systems [Grastien et al., 2011]. Consistency-
based algorithms work by iteratively testing the intersection
of ∆ with sets of diagnostic hypotheses. Such tests are im-
plemented by checking the consistency of i) the model and
the observations (implicitly representing the diagnosis) with
ii) some assumption on the faulty state (representing the di-
agnostic hypotheses).

The present work follows this approach and the following
section is therefore dedicated to answering such diagnostic
questions.

4 Answering a Diagnostic Question

We consider the problem of deciding whether a set of as-
sumptions on the faulty state is consistent with a hybrid sys-
tem and its observations. In this paper, we reduce this prob-
lem to a SAT Modulo Theory (SMT) problem and to solve
it using state of the art technology in SMT.

SMT is an extension of the problem of propositional sat-
isfiability (SAT) to contain operations from various theories
such as the Boolean, bit-vectors, arithmetic, arrays, and re-
cursive datatypes [de Moura et al., 2007]; the linear arith-
metic (LA) is sufficient for this paper.

A LA problem is a tuple 〈VB,VL, Cs〉 where VB is a set
of Boolean-valued variables, VL is a set of real-valued vari-
ables, and Cs ⊂ Constraints(LI(VL)∪VB) is a set of con-
straints defined by the Boolean-valued variables and linear
inequalities over the set of real-valued variables. A solution
to a LA problem is an assignment of the variables VB ∪ VL

that makes all the constraints in Cs logically true. The prob-
lem is said satisfiable if there exists a solution, unsatisfiable
otherwise.

4.1 Defining the Set of Variables

The reduction of a diagnostic question to a LA problem
bears many similarities with the reduction from classical
AI planning to SAT [Kautz and Selman, 1996] and even
more with Bounded Model Checking for hybrid systems [de
Moura et al., 2008]. The SMT solver will be asked to find
a system run that generates the observations while satisfy-
ing the faulty assumptions. As usual, we assume that the
number n of transitions in the system run is bounded. Since
any continuous evolution can be splitted in any number of
transitions, it can be assumed that the number of transitions
is exactly n. We are therefore looking for the run s0, . . . , sk
which can be modeled by defining for each variable v ∈ V
and each timestep i ∈ {0, . . . , k} an SMT variable v@t
which will be assigned the value ν iff st(v) = ν.

4.2 Translating the Model

We define a set of SMT constraints whose set of solutions
maps exactly the system runs with k + 1 states.

For every hard constraint C, for every timestep t ∈
{0, . . . , k}, we include the constraint C@t that corresponds
to the constraint C where every variable v is replaced by
v@t.



Similarly a soft constraint must be satisfied in
a state unless the state is surrounded by discrete
transitions: for every soft constraint C, for ev-
ery timestep t ∈ {0, . . . , k}, we include C@t ∨
(time@(t− 1) = time@t ∧ time@t = time@(t+ 1))
(whether the soft constraints should be satisfied in the
initial/final states is debatable).

Because the set of transition constraints is interpreted as
a conjunction, each such constraint must be satisfied. We
write C@(t, t′) the rewritting of the constraint C where
each variable v is replaced by v@t and each variable v′ is
replaced by v@t′. Each transition constraint C is there-
fore enforced by the SMT constraints C@(t − 1, t) where
t ∈ [1, . . . , k].

4.3 Translating the Observation

Given observations, we define a set of SMT constraints
whose set of solutions maps the runs that generate these ob-
servations.

Regardless of the type of observations, we assume that a
timestep tτ is associated with each time τ mentionned in the
observations.

Given the state-based observation 〈τ, v, ν〉, we simply en-
force the SMT constraint v@tτ = ν.

Given the event-based observations
〈Σo, {〈τi, v〉}i∈[1,...,n]〉, for every observable event

v ∈ Σo and every timestep t ∈ {0, . . . , k}, if there exists
i ∈ [1, . . . , n] such that vi = v and t = tτi , then we define
the SMT constraint: v@t = 1; otherwise (if no such i
exists), we enforce v@t = 0.

4.4 Translating the Assumptions

In the experiments next section, each test will propose to
find a candidate F ′ that is strictly better (F ′ ⊂ F ) than
another candidate F already found. To do so, we need i) to
disallow the faults in Vf \ F and ii) to forbid all faults from
F to be active:

∧

v∈Vf\F

v@k = 0 ∧
∨

v∈F

v@k = 0.

5 The Adapt System

The validation of this approach is based on the indus-
trial track of the international diagnostic competition [Kur-
toglu et al., 2009], i.e., the Adapt-Lite EPS. The system is
composed of roughly 35 components including 20 sensors
(which may be subject to fault).

5.1 Modeling the Components

The object of this subsection is to illustrate how the compo-
nents in Adapt can be modeled.

Real-Valued Sensors

Adapt includes a number of sensors. The real-valued sen-
sors return the (real) value of a state variable (say m).

The sensor can be in nominal, offset, stuck, or drifting
state. This is modeled by three faulty state variable fo, fs,
and fd. The value actually observed is the value of the free
variable o. In nominal state, the observation will be the ac-
tual value plus the noise (here limited to N ), which is rep-
resented by the following hard constraint:

fo = 0 ∧ fs = 0 ∧ fd = 0 ⇒ m−N ≤ o ≤ m+N

Discrete variable t represents the offset:

fo = 1 ⇒ m−N ≤ o− t ≤ m+N.

Discrete variable k represents the stuck-at value.

fs = 1 ⇒ o = k.

Continuous variable co represents the current offset of
a drifting, and is used similarly to the offset value. Con-
trary to offset though, its value varies continuously. The
drift could be defined as a linear variation, i.e., co′ − co =
slope × (time′ − time), but this function is not linear.
Therefore, either (time′ − time) is assumed known for
every timestep (which is a possibility), but in general the
drift should be modeled in a discrete fashion as follows:
fd = x ⇒ m1 × (time′ − time) ≤ co′ − co ≤
m2 × (time′ − time) where m1 and m2 are the lower and
upper bound of the x-th discretisation of the drifting.

Fan Output

The fan output is interesting because it varies very slowly
(as opposed to the voltage for instance). Temperature (for
light bulbs) acts similarly in the large Adapt system. The
flow increases roughly linearly from 0 to a maximum M
and decreases similarly depending. We model the flow with
variable v and hard constraints are defined to forbid the vari-
able to leave the interval [0,M ]. Furthermore four continu-
ous constraints define the continuous evolution such as:

(running∧ v ≤ M) ⇒ v′ − v = sl × (time′ − time)

where sl is the constant slope of the linear increasing func-
tion.

5.2 Experiments

We modeled the Adapt-Lite system proposed by the DX-
Competition [Kurtoglu et al., 2009]. We ran a series of ex-
periments over diagnostic windows of 5 seconds each at a
rate of 2 hertz. The initial state is assumed nominal.

The classical consistency-based approach to diagnosis
[Reiter, 1987] tests whether the nominal state is consistent
with the diagnostic problem and uses the conflict returned
by the solver to generate more diagnostic tests until a so-
lution is found. The cvc4 solver used in our experiments
does not implement the conflict generation as yet and we
therefore turned to the so-called PLS strategy proposed by
Grastien et al. [2011]. This strategy searches for any diag-
nosis (i.e., checks the consistency of trivial assumption with
the model and the observation). The SMT solver returns a
possible behaviour of the system. The diagnostic state is ex-
tracted from this behaviour and another consistency check
is performed, this time with the assumption that the faulty
state should be preferred.

We provide some experimental results on a few selected
instances on Table 1. The experiments were performed
on an Intel i5-2520M 2.5GHz with 3.75GiB and running
GNU/Linux 2.6.43.8-1.fc15.x86 64. The solver used is
cvc4-1.0-x86 64. Each diagnostic test is performed inde-
pendently, i.e., not incrementally.

The runtime are still very weak, with generally 2 min to
solve any problem. Notice however that we did not try to ap-
ply any optimization or heuristic. It is well known that the
SMT encoding affects greatly the performance of the solver.
Furthermore, the search strategy presented here might im-
pair the performance: for instance, testing the consistency



instance time nb faults nb tests

1 2mn20 0 11
2 2mn00 1 10
3 3mn00 1 9
4 0mn56 1 4
5 2mn15 2 11

Table 1: Experimental results: time: the time necessary to
solve the diagnostic problem; nb faults: size of the minimal
cardinality diagnosis returned by the diagnoser; nb tests:
number of calls to the SMT solver.

of the nominal faulty state with the observations in the first
instance takes less than 10 seconds, i.e., the conflict-based
approach would solve the first instance in less than 10 sec-
onds despite the current encoding’s shortcomings.

An advantage of the PLS strategy is however that find-
ing multiple cardinality minimal diagnoses is not harder
than finding single cardinality diagnoses since the diagnoser
can actually stop earlier when the minimal cardinality is
larger. Considering the issue of multiple cardinality again,
a simulation-based approach would struggle with a scenario
involving several faults at the same time as the probability
of any consistent scenario would be extremely low. Our ap-
proach, on the other hand, is able to deal with any number
of faults.

6 Conclusion and Future Works

We presented a novel approach to diagnosis of hybrid sys-
tems that is based on consistency tests. We discussed its ad-
vantages compared to existing approaches. In short, it does
not require the astronomical space necessary for simulation-
based approaches while being highly flexible with respect to
its input (model, observation, and fault).

The experimental results provided in this article show that
the approach is feasible although it is not quite applicable
yet. We are optimistic that careful reduction to SMT and
dedicated implementation of the SMT solver can gain orders
of magnitude in runtime. In particular, we believe that there
is much more potential here than, say, in SMT-based solving

of model-checking problems [Ábrahám et al., 2005]. We
believe, for instance, that observations (which are inexistant
in model-checking) make the SMT problem much easier to
solve; also, there is much more potential for decomposition
of a diagnostic problem into problems of (potentially over-
lapping) subsystems.

Similarly to the redundancy-based approach, the
consistency-based approach as presented here is short-
sighted, in the sense that it does not take into account all
observations since the beginning, but only the last bits of
observation. This is one strength of the simulation-based
approach which keeps in the belief state the important
information about old observations. Typically for the Adapt
System, one wants to remember the configuration of the
network (which switches were open/closed). Incremental-
ity, and in particular how much information should/needs to
be remembered about past observations will allow to track
faulty behaviours that manifest themselves in long periods.

Acknowledgments

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications

and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
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